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Summary and Purpose 

  This tutorial covers the following areas: 
 
 - Relationship between requirements attributes and reliability and maintainability 
 
 - Requirements attributes that are strongly related to the occurrence of defects and failures in the software  
 
- Relationship between requirements attributes and software attributes like complexity and size  
 
- Requirements attributes that are strongly related to the complexity and size of the software 
 
- Feasibility of using requirements attributes as predictors of reliability and maintainability  
 
-  Static requirements change attributes, like the size of the change, for predicting reliability in execution 
(e.g., failure occurrence) and maintainability of the code 
   
- Requirements attributes that pose the greatest risk for reliability and maintainability 
 

This tutorial is designed for practitioner software engineers and managers who want to learn how to 
apply software reliability risk management in their organizations. Attendees will learn how to apply a 
software reliability risk analysis to identify fault prone software. 
  

Norman F. Schneidewind, PhD 
 
Norman F. Schneidewind is Professor of Information Sciences and Director of the Software Metrics 
Laboratory at the Naval Postgraduate School. Dr. Schneidewind is a Fellow of the IEEE, elected in 1992 
for "contributions to software measurement models in reliability and metrics, and for leadership in 
advancing the field of software maintenance". He is the developer of the Schneidewind software reliability 
model which is used by NASA to assist in the prediction of software reliability of the Space Shuttle, by the 
Naval Surface Warfare Center for Trident software reliability prediction, and by the Marine Corps Tactical 
Systems Support Activity for distributed system software reliability assessment and prediction. This model 
is one of the models recommended by the American National Standards Institute and the American 
Institute of Aeronautics and Astronautics Recommended Practice for Software Reliability. He has 
published widely in the fields of software reliability and metrics.   
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1. INTRODUCTION 
 
 While software design and code metrics have enjoyed 
some success as predictors of software quality attributes 
such as reliability [5, 6, 7, 8, 11, 13, 14], the measurement 
field is stuck at this level of achievement. If measurement 
is to advance to a higher level, we must shift our attention 
to the front-end of the development process, because it is 
during system conceptualization that errors in specifying 
requirements are inserted into the process and adversely 
affect our ability to maintain the software. A requirements 
change may induce ambiguity and uncertainty in the 
development process that cause errors in implementing the 
changes. Subsequently, these errors propagate through later 
phases of development and maintenance. These errors may 
result in significant risks associated with implementing the 
requirements. For example, reliability risk (i.e., risk of 
faults and failures induced by changes in requirements) 
may be incurred by deficiencies in the process (e.g., lack of 
precision in requirements). Although requirements may be 
specified correctly in terms of meeting user expectations, 
there could be significant risks associated with their 
implementation. For example, correctly implementing user 
requirements could lead to excessive system size and 
complexity with adverse effects on reliability and 
maintainability or there could be a demand for project 
resources that exceeds the available funds, time, and 
personnel skills. Interestingly, there has been considerable 
discussion of project risk (e.g., the consequences of cost 
overrun and schedule slippage) in the literature [1] but not 
a corresponding attention to reliability and maintainability 
risk.    

 
Risk  in the Webster's New Universal Unabridged 

Dictionary is defined as "the chance of injury; damage, or 
loss" [21]. Some authors have extended the dictionary 
definition as follows: "Risk Exposure=Probability of an 
Unsatisfactory Outcome*Loss if the Outcome is 
Unsatisfactory" [1]. Such a definition is frequently applied 
to the risks in managing software projects such as budget 
and schedule slippage. In contrast, our application of the 
dictionary definition pertains to the risk of executing the 
software of a system where there is the chance of injury 
(e.g., crew injury or fatality), damage (e.g., destruction of 
the vehicle), or loss (e.g., loss of the mission) if a serious 
software failure occurs during a mission. We use risk 
factors to indicate the degree of risk associated with such 
an occurrence. 
 

The generation of requirements is not a one-time activity. 
Indeed, changes to requirements can occur during 
maintenance. When new software is developed or existing 
software is changed in response to new and changed 
requirements, respectively, there is the potential to incur 
reliability and maintainability risks. Therefore, in assessing 
the effects of requirements on reliability and 
maintainability, we should deal with changes in 
requirements throughout the life cycle.  
 

In addition to the relationship between requirements 
and reliability and maintainability there are the 

intermediate relationships between requirements and 
software metrics (e.g., size, complexity) and between 
metrics and reliability and maintainability. These 
relationships may interact to put the reliability and 
maintainability of the software at risk because the 
requirements changes may result in increases in the size 
and complexity of the software that may adversely affect 
reliability and maintainability. The Space Shuttle flight 
software is used as an example of these interactions. For 
example, the number of iterations of a requirements change 
-- the "modification level" – in the Space Shuttle is 
inversely related to reliability. That is, if many revisions of 
a requirement are necessary before it is approved, this is 
indicative of a requirement that is hard to understand and 
implement safely -- a risk that directly impacts reliability. 
At the same time, this complex requirement will affect the 
size and complexity of the code that will, in turn, have 
deleterious effects on reliability and maintainability. 

 
Acronyms 
 
CRs: Change Requests 
DRs: Discrepancy Reports 
MW: Man Weeks 
SLOC: Source Lines Of Code 
 
Assumption  
 
There is a risk to reliability involved in making changes to 
the software. 
 
Definitions 
 
Alpha: Level of  s-significance in statis tical tests. 
 
Categorical Data Analysis: A categorical variable is one for 
which the measurement scale consists of a set of categories.  
 
Change History Line Count: Number of lines in the change 
record section of a module in an Operational Increment. 
 
Change Request Count: Number of Change Requests per 
module in an Operational Increment. 
 
Critical Value: A discriminant that distinguishes high 
quality from low quality software. 
 
Cycle Count: Number of cycles per module in an 
Operational Increment. 
 
Discrepancy Report Count: Number of Discrepancy 
Reports per module in an Operational Increment. 
 
Discriminant: A factor that serves to classify entities into 
categories (e.g., software requirements complexity exceeds 
threshold, thus classifying the change as “high risk”). 
 
Executable Statement Count: Number of source language 
statements that execute in a module of an Operational 
Increment. 
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Node Count: Number of nodes in a module’s control graph 
in an Operational Increment. 
 
Non-Commented Lines Of Code Count: Number of source 
lines of code, excluding comments, per module in an 
Operational Increment. 
 
Operational Increment (OI): A software system comprised 
of modules and configured from a series of builds to meet  
Space Shuttle mission functional requirements.  
 
Operand Count: Number of unique operands per module in 
an Operational Increment. 
 
Operator Count: Number of unique operators per module in 
an Operational Increment. 

 
Path Count: Number of paths per module in an Operational 
Increment. 
 
Rank Correlation: A type of correlation analysis in which 
the ranks of quantities are used rather than their values. 
 
Requirements Attributes: Characteristics of requirements 
(e.g., complexity, size, criticality). 
 
s-significant: statistically significant. 
 
SLOC Changed: Number of source lines of code changed 
per module in an Operational Increment.  
 
Statement Count: Number of statements per module in an 
Operational Increment.  
   
Severity Codes: 

1. Severe Vehicle or Crew Performance Implications. 
2. Affects Ability to Complete Mission (Not a safety issue). 
3. Workaround Available, Minimal Effect on Procedures. 
4. Insignificant (paperwork, etc.). 
5. Not Visible to User. 

  
2. OBJECTIVES  

 
Given the lack of emphasis in software measurement 

on the critical role of requirements, it is imp ortant to 
explore the following issues: 
 
 - What is the relationship between requirements attributes 
and reliability and maintainability? That is, are there 
requirements attributes that are strongly related to the 
occurrence of defects and failures in the software?  
 
- What is the relationship between requirements attributes 
and software attributes like complexity and size? That is, 
are there requirements attributes that are strongly related to 
the complexity and size of software? 
 
- Is it feasible to use requirements attributes as predictors of 
reliability and maintainability? That is, can static 
requirements change attributes like the size of the change 

be used to predict reliability in execution (e.g., failure 
occurrence) and the maintainability of this code? 
  
- Which requirements attributes pose the greatest risk to 
reliability and maintainability? 

 
3. CONTEMPORARY SOFTWARE MEASUREMENT 

PROJECTS 
 
A number of useful reliability and maintenance 

measurement projects have been reported in the literature. 
Much of the research and literature in software metrics 
concerns the measurement of code characteristics [10, 12]. 
This is satisfactory for evaluating product quality and 
process effectiveness once the code is written. However, if 
organizations use measurement plans that are limited to 
measuring code, these plans will be deficient in the 
following ways: incomplete, lack coverage (e.g., no 
requirements analysis and design), and start too late in the 
process. For a measurement plan to be effective, it must 
start with requirements and continue through to operation 
and maintenance. Since requirements characteristics 
directly affect code characteristics and hence reliability and 
maintainability, it is important to assess their impact when 
requirements are specified.  

 
Briand, et al, developed a process to characterize 

software maintenance projects [2]. They present a 
qualitative and inductive methodology for performing 
objective project characterizations to identify maintenance 
problems and needs. This methodology aids in determining 
causal links between maintenance problems and flaws in 
the maintenance organization and process. Although the 
authors have related ineffective maintenance practices to 
organizational and process problems, they have not made a 
linkage to risk assessment.  

 
Pearse and Oman applied a maintenance metrics index 

to measure the maintainability of C source code before and 
after maintenance activities [15]. This technique allowed 
the project engineers to track the "health" of the code as it 
was being maintained. Maintainability is assessed but not 
in terms of risk assessment. 

 
Pigoski and Nelson collected and analyzed metrics on 

size, trouble reports, change proposals, staffing, and trouble 
report and change proposal completion times [17]. A major 
benefit of this project was the use of trends to identify the 
relationship between the productivity of the maintenance 
organization and staffing levels. Although productivity was 
addressed, risk assessment was not considered. 

 
Sneed reengineered a client maintenance process to 

conform to the ANSI/IEEE Standard 1219, Standard for 
Software Maintenance [19]. This project is a good example 
of how a standard can provide a basic framework for a 
process and can be tailored to the characteristics of the 
project environment. Although applying a standard is an 
appropriate element of a good process, risk assessment was 
not addressed. 
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Stark collected and analyzed metrics in the categories 
of customer satisfaction, cost, and schedule with the 
objective of focusing management's attention on 
improvement areas and tracking improvements over time 
[20]. This approach aided management in deciding whether 
to include changes in the current release, with possible 
schedule slippage, or include the changes in the next 
release. However, the author did not relate these metrics to 
risk assessment. 

 
An indication of the back seat that software risk 

assessment takes to hardware, Fragola reports on 
probabilistic risk management for the Space Shuttle. 
Interestingly, he says: “The shuttle ris k is embodied in the 
performance of its hardware, the careful preparation 
activities that its ground support staff take between flights 
to ensure this performance during a flight, and the 
procedural and management constraints in place to control 
their activities.” [4]. There is not a word in this statement or 
in his article about software! Another hardware-only risk 
assessment is by Maggio, who says: “The current effort is 
the first integrated quantitative assessment of the risk of the 
loss of the shuttle vehicle from 3 seconds prior to liftoff to 
wheel-stop at mission end.” Again, not a word about 
software [9]. 

 
Pfleeger lays out a roadmap for assessing project risk 

that includes risk prioritization [16], a step that we address 
with the degree of s-confidence in the statistical analysis of 
risk (see section 6). 
 

4. TECHNICAL APPROACH 
 
By retrospectively analyzing the relationship between 

requirements and reliability and maintainability, we will 
identify those risk factors that are associated with reliability 
and maintainability and we will prioritize them based on 
the degree to which the relationship is s-significant. In 
order to quantify the effect of a requirements change, we 
will use various risk factors that are defined as the attribute 
of a requirement change that can induce adverse effects on 
reliability (e.g., failure incidence), maintainability (e.g., 
size and complexity of the code), and project management 
(e.g. personnel resources). This process is illustrated in 
Figure 1. Various examples of Space Shuttle risk factors 
are shown in section 5.  

 
Table 1 shows the Change Request Hierarchy of the 

Space Shuttle, involving change requests (i.e., a request for 
a new requirement or modification of an existing 
requirement), discrepancy reports (i.e., reports that 
document deviations between specified and observed 
software behavior), and failures. We will analyze 
categories 1 versus 2.1 and 1 versus 2.2.3 with respect to 
risk factors as discriminants of the categories.  
 
 
 
 
 
 

Table 1: Change Request Hierarchy 
 
Change Requests (CRs) 
  

1. No Discrepancy Reports (i.e., CRs with no DRs) 
 
 2. Discrepancy Reports 
   

2.1 No failures (i.e., CRs with DRs only) 
   

2.2 Failures 
    

2.2.1 Pre-release failures 
    

2.2.2 Post-release failures 
    

2.2.3 Exclusive OR of 2.2.1 and 2.2.2 (i.e., CRs with 
failures) 

 
4.1 Categorical Data Analysis 
  

Using the null hypothesis, Ho: A risk factor is  not a 
discriminant of reliability and maintainability versus the 
alternate hypothesis H1: A risk factor is a discriminant of 
reliability and maintainability, we will use categorical data 
analysis to test the hypothesis. A similar hypothesis will be 
used to assess whether risk factors can serve as 
discriminants of metrics characteristics. We will use the 
requirements, requirements risk factors, reliability, and 
metrics data from the Space Shuttle “Three Engine Out” 
software (abort sequence invoked when three engines are 
lost) to test our hypotheses. Samples of these data are 
shown below.  
 
- Pre-release and post release failure data from the Space 
Shuttle from 1983 to the present. An example of post-
release failure data is shown in Table 2. 
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Table 2: Example Failure Data 
Failure Found On 

 Operational Increment 
Days from Release 

When Failure Occurred 
Discrepancy 

Report #  
Severity Failure Date Release Date Module in 

Error 
Q 75 1 2 05-19-97 03-05-97 10 

 
- Risk factors for the Space Shuttle Three Engine Out Auto 
Contingency software. This software was released to 

NASA by the developer on 10/18/95. An example of a 
partial set of risk factor data is shown in Table 3.  

 
Table 3: Example Risk Factor Data 

Change 
Request 
Number 

SLOC 
Changed 

Complexity 
Rating of 
Change 

Criticality 
of Change 

Number of 
Principal 

Functions 
Affected 

Number of 
Modifications 

Of Change 
Request  

Number of 
Requirements 

Issues  

Number of 
Inspections 

Required 

Manpower 
Required to 

Make 
Change 

A 1933 4 3 27 7 238 12 209.3 MW 

 
- Metrics data for 1400 Space Shuttle modules, each with 
26 metrics. An example of a partial set of metric data is 
shown in Table 4.  

 
Table 4: Example Metrics Data 

Module Operator 
Count 

Operand 
Count 

Statement 
Count 

Path Count Cycle 
Count 

Discrepancy 
Report Count 

Change Request 
Count 

10 3895 1957 606 998 4 14 16 

  
Table 5 shows the definition of the Change Request 

samples that are used in the analysis. Sample sizes are 
small due to the high reliability of the Space Shuttle. 
However, sample size is one of the parameters accounted 
for in the statistical tests that produced s-significant results 
in certain cases (see section 6). 

 
Table 5: Definition of Samp les 

 
Sample  

Size 

Total CRs  24 
Instances of CRs with no DRs  12 
Instances of CRs with DRs only 9 
Instances of CRs with failures 7 
Instances of CRs with modules 
that caused failures 

7 

CRs can have multiple instances of DRs, failures, 
and modules that caused failures. 
CR: Change Request. DR: Discrepancy Report. 
 

To minimize the confounding effects of a large number of 
variables that interact in some cases, a statistical categorical 
data analysis will be performed incrementally. We will use 
only one category of risk factor at a time to observe the 
effect of adding an additional risk factor on the ability to 
correctly classify change requests that have discrepancy 
reports (i.e., a report that documents deviations between 
specified and observed software behavior) or failures and 
those that do not. The Mann-Whitney test for difference in 
medians between categories will be used because no 
assumption need be made about s-statistical distribution; in 
addition, some risk factors are ordinal scale quantities (e.g., 
modification level), for which the median is an appropriate 

statistic. Furthermore, because some risk factors are ordinal 
scale quantities, rank correlation will be used to check for 
risk factor dependencies. 
 

 5. RISK FACTORS 
 
One of the software maintenance problems of the 

NASA Space Shuttle Flight Software organization is to 
evaluate the risk of implementing requirements changes. 
These changes can affect the reliability and maintainability 
of the software. To assess the risk of change, the software 
development contractor uses a number of risk factors, 
which are described below. The risk factors were identified 
by agreement between NASA and the development 
contractor based on assumptions about the risk involved in 
making changes to the software. This formal process is 
called a risk assessment. No requirements change is 
approved by the change control board without an 
accompanying risk assessment. During risk assessment, the 
development contractor will attempt to answer such 
questions as: “Is this change highly complex relative to 
other software changes that have been made on the Space 
Shuttle?”  If this were the case, a high-risk value would be 
assigned for the complexity criterion. To date this 
qualitative risk assessment has proven useful for 
identifying possible risky requirements changes or, 
conversely, providing assurance that there are no 
unacceptable risks in making a change. However, there has 
been no quantitative evaluation to determine whether, for 
example, high risk factor software was really less reliable 
and maintainable than low risk factor software. In addition, 
there is no model for predicting the reliability and 
maintainability of the software, if the change is 
implemented. We will address both of these issues.  
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Requirements attributes like completeness, 

consistency, correctness, etc. could be used as risk factors 
[3]. While these are useful generic concepts, they are 
difficult to quantify. Although some of the following risk 
factors also have qualitative values assigned, there are a 
number of quantitative risk factors, and many of the risk 
factors deal with the execution behavior of the software 
(i.e., reliability), which is of interest. 
 
5.1 Space Shuttle Flight Software Requirements Change 
Risk Factors  
 

The following are the definitions of the nineteen risk 
factors, where we have placed the risk factors into 
categories and have provided interpretations of the question 
the risk factor is designed to answer. If the answer to a 
yes/no question is "yes" or if the answer to a question that 
requires an estimate is an anomalous value, it means this is 
a high-risk change with respect to the given risk factor.  
 
 For each risk factor, it is indicated whether there is an 
s-significant relationship between it and reliability and 
maintainability for the software version analyzed. The 
details of the findings are shown in the section 6. In many 
instances, there is insufficient data to do the analysis 
because in these cases the risk factor evaluation forms are 
incomplete. These cases are indicated below. Only those 
risk factors where there is sufficient data (i.e. data from 
seven or more CRs) and the results are s-significant are 
shown. The names of the risk factors used in the analysis 
are given in quotation marks.  
 
Complexity Factors 
 
o Qualitative assessment of complexity of change (e.g., 
very complex); “complexity”. Not s-significant. 
 
 - Is this change highly complex relative to other 
software changes that have been made on the Space 
Shuttle?  
 
o Number of modifications or iterations on the proposed 
change; “mods”. s-significant. 
 

- How many times must the change be modified or 
presented to the change control board before it is 
approved?  

 
Size Factors 
 
 o Number of lines of code affected by the change; “sloc”. 
s-significant. 
 
 - How many lines of code must be changed to 
implement the change request? 
 
o Number of modules changed; “mod chg”. Not s-
significant.    
 

-  Is the number of changes to modules excessive?  

 
Criticality of Change Factors  
 
o Criticality of function added or changed by the change 
request; “crit func” (insufficient data) 
 

- Is the added or changed functionality critical to mission 
success? 
 
o Whether the software change is on a nominal or 
off-nominal program path (i.e., exception  condition); “off 
nom path”. (insufficient data) 
 
 - Will a change to an off-nominal program path affect 
the reliability of the software? 
 
Locality of Change Factors 
 
o The area of the program affected (i.e., critical area such 
as code for a mission abort sequence); “critic area” 
(insufficient data) 
 
 - Will the change affect an area of the code that is 
critical to mission success?  
 
o Recent changes to the code in the area affected by the 
requirements change; “recent chgs” (insufficient data) 
 
 - Will successive changes to the code in one area lead 
to non-maintainable code? 
 
o New or existing code that is affected; “new\exist code” 
(insufficient data) 
 
 - Will a change to new code (i.e., a change on top of a 
change) lead to non-maintainable code? 
 
o Number of system or hardware failures that would have 
to occur before the code that implements the requirement 
would be executed; “fails ex code” (insufficient data) 
 

- Will the change be on a path where only a small number 
of system or hardware failures would have to occur before 
the changed code is executed ? 
 
Requirements Issues and Functions Factors 
 
o  Number and types of other requirements affected by the 
given requirement change (requirements issues); “other 
chgs” (insufficient data) 
 
 - Are there other requirements that are going to be 
affected by this change? If so, these requirements will have 
to be resolved before implementing the given requirement. 
 
o  Number of possible conflicts among requirements 
(requirements issues); “issues” s-significant. 
 

- Will this change conflict with other requirements 
changes (e.g., lead to conflicting operational scenarios)  
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o  Number of principal software functions affected by the 
change; “prin funcs” Not s-significant. 

 
- How many major software functions will have to be 

changed to make the given change? 
           
Performance Factors  
     
o  Amount of memory space required to implement the 
change; “space” s-significant.  
 

- Will the change use memory to the extent that other 
functions will not have sufficient memory to operate 
effectively? 
 
o  Effect on CPU performance; “cpu” (insufficient data) 
 

- Will the change use CPU cycles to the extent that other 
functions will not have sufficient CPU capacity to operate 
effectively? 
 
Personnel Resources Factors 
 
o   Number of inspections required to approve the change; 
“inspects” Not s-significant. 
 
 - Will the number of requirements inspections lead to 
excessive use of personnel resources? 
 
o  Manpower required to implement the change; 
“manpower”. Not s-significant. 
 

- Will the manpower required to implement the software 
change be significant? 
      
o   Manpower required to verify and validate the 
correctness of the change; “cost” Not s-significant. 
 

- Will the manpower required to verify and validate the 
software change be significant? 
 
o  Number of tests required to verify and validate the 
correctness of the change; “tests” Not s-significant. 
 

- Will the number of tests required to verify and validate 
the software change be significant? 
 

6. RESULTS 
 
This section contains the results of performing the 

following statistical analyses (a, b, and c) shown in Tables 
6. 7, and 8, respectively. This process is illustrated in 
Figure 2. Only those risk factors where there is sufficient 
data and the results are s-significant, as indicated in section 
5, are shown. Some quantitative risk factors (e.g., size of 
change) are s- significant; no non-quantitative risk factors 
(e.g., complexity) are s-significant.  
 
a. Categorical data analysis on the relationship between 
CRs with no DRs vs. CRs with failures, using the Mann-
Whitney Test; and categorical data analysis on the 

relationship between CRs with no DRs vs. CRs with DRs 
only, using the Mann-Whitney Test 
 
b. Dependency check on risk factors, using rank correlation 
coefficients; and 
 
c. Identification of modules that caused failures as a result 
of the CR, and their metric values. 
 
6.1Categorical Data Analysis 

 
Of the original nineteen risk factors, only four survived 

as being s-significant (alpha ≤ .05); seven are not s-
significant; and eight had insufficient data to make the 
analysis (see section 5). As Table 6 shows, there are s-
significant results for CRs with no DRs vs. CRs with 
failures for the risk factors “mods”, “sloc”, “issues”, and 
“space”. There are also s-significant results for CRs with no 
DRs vs. CRs with DRs only for the risk factors “issues” and 
“space”. Since the value of alpha represents the level of s-
significance of a risk factor in predicting reliability, we use 
it in Table 6 as a means to prioritize the use of risk factors, 
with low values meaning high priority. The priority order 
is: “space”, “issues”, “mods”, and “sloc”. 
 

The s-significant risk factors would be used to predict 
reliability and maintainability problems for this set of data 
and this version of the software. The result regarding 
“mods” does confirm the software developer’s view that 
this is an important risk factor. This is the case because if 
there are many iterations of the change request, it implies 
that it is complex and difficult to understand. Therefore, the 
change is likely to lead to reliability and maintainability 
problems. It is not surprising that the size of the change 
“sloc” is s-significant because our previous studies of 
Space Shuttle metrics have shown it to be important [18]. 
Conflicting requirements “issues” could result in reliability 
and maintainability problems when the change is 
implemented. The on-board computer memory required to 
implement the change “space” is critical to reliability 
because unlike commercial systems, the Space Shuttle does 
not have the luxury of large physical memory, virtual 
memory, and disk memory to hold its programs and data. 
Any increased requirement on its small memory to 
implement a change comes at the price of demands from 
competing functions.   
 

In addition to identifying predictive risk factors, we 
must also identify thresholds for predicting when the 
number of failures would become excessive (i.e., rise 
rapidly with the risk factor). An example is shown in 
Figure 3 where cumulative failures are plotted against 
cumulative memory space. The figure shows that when 
“space” reaches 2688 words, failures reach 3 (obtained by 
querying the data point) and climbs rapidly thereafter. 
Thus, a space count of 2688 would be the best estimate of 
the threshold to use in controlling the quality of the next 
version of the software. Similarly, Figure 4 shows that 
when “issues” reach a threshold of 286, failures reach 3 and 
rise rapidly thereafter. In contrast, Figure 5 shows no 
dramatic increase in failures with increase in “mods”; the 
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reason for this anomaly is that there is less variability in the 
“mods” data than for the other three s-significant risk 
factors. Figure 6 shows that failures increase steeply when 
“sloc” reaches 1965.This process would be repeated across 
versions with the threshold being updated as more data is 
gathered. Thresholds would be identified for each risk 
factor in Table 6. This would provide multiple alerts for the 
quality of the software going bad (i.e., the reliability and 
maintainability of the software would degrade as the 
number of alerts increases). 
 
6.2 Dependency Check on Risk Factors 
 
 In order to check for possible dependencies among risk 
factors that could confound the results, rank correlation 
coefficients are computed in Table 7. Using an arbitrary 
threshold of ≥.7, the results indicate s-significant 
dependencies between “issues” and “mod” and between 
“issues” and “sloc” for CRs with no DRs. That is, as the 
number of conflicting requirements increases, the number 
of modifications and size of the change request increases. 
In addition, there is an s-significant dependency between 
“issues” and “space” for CRs with failures. That is, as the 
number of conflicting requirements increases, the memory 
space required to implement the change request increases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.3 Identification of Modules that Caused Failures  
 
 Requirements change requests may occur on modules 
with metric values that exceed the critical values. In these 
cases, there is s-significant risk in making the change 
because such modules could fail. Table 8 shows modules 
that caused failures, as the result of the CRs, had metric 
values that far exceed the critical values. The latter were 
computed in [18]. A critical value is a discriminant that 
distinguishes high quality from low quality software. A 
module with metric values exceeding the critical values is 
predicted to cause failures. 
 

Although the sample sizes are small, due to the high 
reliability of the Space Shuttle, the results consistently 
show that modules with excessive size and complexity lead 
to failures. Not only will the reliability be low but this 
software will also be difficult to maintain. The application 
of this information is that there is a high degree of risk 
when changes are made to software that has the metric 
characteristics shown in the table. Thus, these 
characteristics should be considered when making the risk 
analysis. 
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Table 6: S-significant Results (alpha ≤ .05). CRs with no DRs vs. CRs. with 
failures. Mann-Whitney Test 

 
 

Risk Factor 
 

Alpha 
Median Value 

CRs with no DRs  
 

Median Value 
CRs with failures 

mods .0168 .50 4 

sloc .0185 10 100 

issues  .0038 2 16 

space .0036 4 231.5 

CRs with no DRs vs. CRs with DRs only. 
 

 
Risk Factor 

 
Alpha 

Median Value 
CRs with no DRs  

Median Value 
CRs with DRs 

only 
issues  .0386 2 14 

space .0318 4 111.50  

mods:  Number of modifications of the proposed change. 
sloc:    Number of lines of code affected by the change. 
issues: Number of possible conflicts among requirements. 
space: Amount of memory space required to implement the change (full words). 

 
 

Table 7: Rank Correlation Coefficients of Risk Factors 
                                           CRs with no DRs  

 mods sloc issues  space 
mods  .230 .791 .401 
sloc .230  .708 .317 

issues  .791 .708  .195 
space .401 .317 .195  

CRs with failures 
 mods sloc issues  space 

mods  .543 -.150 .378 
sloc .543  .286 .452 

issues  -.150 .286  .886 
space .378 .452 .886  

 
 

Table 8: Selected Risk Factor Module Characteristics 
Change 
Request 

Module Metric Metric Critical 
Value 

Metric Value 

A 1 change history line count in 
module listing 

63 558 

A 2 non-commented lines of code 
count   

29 408 

B 3 executable statement count 27 419 
C 4 unique operand count 45 83 
D 5 unique operator count 9 33 
E 6 node count (in control graph) 17 66 

All of the above metrics exceeded the critical values for all of the above Change Requests.  
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7. CONCLUSIONS 
 

Risk factors that are s-significant can be used to make 
decisions about the risk of making changes. These changes 
impact the reliability and maintainability of the software. 
Risk factors that are not s-significant should not be used; 
they do not provide useful information for decision-making 
and cost money and time to collect and process. The 
amount of memory space required to implement the change 
(“space”), the number of requirements issues (“issues”), the 
number of modifications (“mods”), and the size of the 
change (“sloc”), were found to be s-significant, in that 
priority order. In view of the dependencies among these 
risk factors, “space” would be the choice if the using 
organization could only afford a single risk factor. We also 
showed how risk factor thresholds are determined for 
controlling the quality of the next version of the software. 

 
S-significant results were found for CRs with no DRs 

vs. CRs with failures; in addition, s-significant results were 
found for CRs with no DRs vs. CRs with DRs only.  

  
Metric characteristics of modules should be considered 

when making the risk analysis because metric values that 
exceed the critical values are likely to result in unreliable 
and non-maintainable software. 
 

This methodology can be generalized to other risk 
assessment domains, but the specific risk factors, their 
numerical values, and statistical results may vary.  
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Figure 4: Failures vs. Issues
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Figure 3: Failures vs. Memory Space
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Figure 5: Failures vs. Mods
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Figure 6: Failures vs. SLOC
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